Categories
Specs Technology

XML Expectations

Originally published at Netscape Enterprise Developer, now archived at Wayback Machine

Extensible Markup Language is a language that defines other languages. It also has the potential to give structure and meaning to the information contained in HTML documents or any other data form — making such information naturally as searchable and structured as the information locked into a database. Such capabilities mean that XML can turn our current view of data upside down — instead of a static, impenetrable lump of information, a file that uses XML suddenly has a logical structure that can be manipulated, queried, and changed without delving down into the data itself. The potential of such a meta-language is huge — if it’s implemented as an open standard. Right now, XML remains such a standard, and if it continues to evolve along open lines, it could drastically improve Web-based development.XML is similar to SQL in a number of ways; SQL is also an example of a multi-purpose language used to define data structures and query those same data structures without concern as to how the information is displayed or used. The only guarantees are that the information is defined in structures, the structures follow certain rules, and the information contained within the structures can be accessed automatically or manually. Both SQL and XML define structures for information in the form of elements, element attributes, and element content. The main difference is that instead of defining data that is stored in a physical storage medium usually only accessible by a database engine, XML describes data that is stored and accessed from within documents.

XML’s Parent: SGML

XML is a subset of SGML (Standardized General Markup Language), a generalized markup language that was passed as an ISO standard in the 1980s. Rather than specifying a language’s elements directly, SGML is used to define the rules that constrain the elements of a specific language.

SGML grew out of the need to define a document’s structure and to define rules used to determine whether the document is valid and well formed. The document’s structure is defined through the use of markup tags, which delimit the elements, and Document Type Definition (DTD) files that define each element’s structure and content, providing a sort of grammar for the document.

For example, using SGML, a customer element within a document could have the following structure:

<CUSTOMER name="Shelley Powers" id="CUST011A1">
<PO id="PO23349008">
<POITEM id="POI1">
<ITEM id="14453">
Item ID: 14453
Item Desc: some description
</ITEM>
</POITEM>
</PO>
</CUSTOMER>

To validate the markups used to define the structure of the document, an associated DTD would have to be created, with statements similar to the following:

<!ELEMENT customer - - (POITEM)+><!ATTLIST customer    name CDATA   id CDATA>

This extremely simplified and abbreviated DTD uses an Extended Backus-Naur Form (EBNF) syntactic notation to create the grammar.

Using a standardized meta-language to define entities within a document allows SGML parsers to pull out the individual entities (such as the customer entity just described) and any associated attributes and content. An application can then use that information for a number of purposes, including the following possibilities:

  • To define information in a database-neutral format for transport between unlike databases.
  • To provide a search engine that allows a person to query on the entity type as well as the data.
  • For report generation, or even an online hypertext order processing form that allows the reader to drill down within the document to find the desired information.
  • To define a standard language for a specific industry or science, such as the petroleum industry or chemistry, which includes special notational conventions.

The concept of SGML is very attractive: Define a language that in turn defines a document structure used for a specific group of documents and which can be extended without impacting the underlying language generation mechanism. Unfortunately, the downside to SGML is that it is far from trivial to define the DTD for a language. SGML is a complex standard that is difficult to implement.

HTML, a derivative of SGML
SGML did, however, provide the roots of the first Web document specification, HTML. HTML was derived from SGML, except that it predefined a group of elements that controlled the delivery of a Web page’s content. In addition, the original HTML elements were expanded to include suggested presentation elements that controlled the appearance of the Web page. SGML does not control the presentation of elements, only the element structure and semantics.

The following code defines an HTML unnumbered list element, which is defined by the DTD associated with the HTML 4.0 specification as having a start and end tag and containing at least one list item:

<!ELEMENT UL - - (LI)+>

According to the EBNF associated with SGML, this DTD states that UL is an element, the double dashes assert that the element requires a start and end tag, and the element consists of at least one, and possibly more than one, list item (LI). When a user agent such as a browser parses an HTML element, it knows to look for both beginning and ending UL tags and at least one LI element contained within those tags.

Associated with the DTD for HTML 4.0 is an implied visual presentation of an unnumbered list, which is that each list item has a specified list graphic, each list item is on a separate line, and each list item lines up beneath the previous list item. However, not all user agents (such as browsers) are visual, so presentation can only be a suggestion, not a mandate.

After the first releases of the HTML specification, new elements crept into the language to provide control over page presentation. One such element is the FONT element, which controls the size, color, type, and font family of any text the element contains. The problem with using a specific tag like FONT, however, is that non-standardized tags can lead to different Web page presentations depending on the user agents.

To help differentiate an element’s structure and its presentation in HTML, the W3C issued a recommendation for CSS1, or Cascading Style Sheet Level 1, a specification that provides presentation information for HTML elements.

The real advantage of HTML was that it was relatively easy to code and display, even in different browsers. The ease of HTML was directly responsible for the massive growth of the Web. If Web document access had begun with XML, chances are you wouldn’t be reading this article right now and Web access would probably be limited to the scientific community. We initially needed a simple mechanism to create Web documents, and HTML was it. The very lack of flexibility was the language’s strength.

Now that the Web and Internet-based technologies have matured to a certain extent, enterprise developers are increasingly demanding a way to build flexibility into documents like Web pages in order to increase their effectiveness and ease of access.

Enter XML
XML arose from a need to create more generalized markup languages without having to follow the large and complex SGML standard. The XML standard still demands that a markup language be defined as well-formed, but it makes the validation step optional, which means that an associated DTD is not required (though one can be included). Additionally, XML uses only a subset of the rules for SGML, letting developers understand the principles and implementation of the technology more quickly.

Like SGML, XML is a meta-language that provides rules to define a set of tags that can be used within a document. These tags are then used to delimit an XML entity, its attributes, and its contents, and to define the elements’ syntax. These tags are read by a XML processor, which in turn provides an application with access to the entities. The application can then perform one or more actions on the XML entities.

XML processors can either be validating, which means that they make use of an associated DTD in order to ensure valid structures, or non-validating. Regardless of whether or not they are validated, XML documents can be considered to be well-formed as long as they match the XML syntax overall and as long as each entity within the document meets the syntax for a well-formed XML entity.

The main requirements for a well-formed Extensible Markup Language include the following:

  • The language may begin with a valid XML declarative statement or prolog.
  • There is one element that acts as the root element and which acts as parent to all other elements.
  • Elements are either not empty or, if they are empty, they have a “hint” encoded within the element that defines this information to the XML parser.
  • Non-empty elements must have start and ending tags.
  • All elements except the root element are contained within some element, referred to as the element’s parent; all contained elements are referred to as the parent element’s children.
  • Elements can contain character data, other elements, CData sections, processing instructions or comments.
  • Each parsed element within the document is well-formed.
  • Character data that may be processed as XML is enclosed within CData sections.
  • Documents can include comments, white space, and processing instructions.

Consider that a valid and well-formed XML document consists of the following EBNF format non-terminating symbols (non-terminating meaning that the symbols are themselves expanded elsewhere):

document::= prolog element Misc*

A complying document could be as simple as:

<?XML VERSION="1.0" ENCODING="UTF-8"?>
<ARTICLE name="XML" author="Shelley Powers"/>

This document consists of the prolog section which includes the XML declaration (“<?XML”) and includes the version number of the XML definition, as well as the encoding declaration. It also contains one element, ARTICLE, which has two attributes, NAME and AUTHOR. Since the element is an empty element, it ends with a backslash to signal to the processor that the element contains no other content. This is necessary for a non-DTD (non-validating) document. Otherwise the XML processor would not know when to look ahead in the parsing for required element content. This is one of the key features of XML: Forward processing information is embedded directly within the document, negating the necessity of creating an associated DTD.

The example just provided is a well-formed document, but not a valid one, since no DTD is provided for validation. The example also demonstrates the simplicity of XML. An even simpler version of the language would be:

<ARTICLE name="XML" author="Shelley Powers"/>

To make the document a valid one, I could have added a DTD for the ARTICLE element directly into the document, or linked to a DTD external file:

<?XML VERSION="1.0" ENCODING="UTF-8"?>
<!DOCTYPE article SYSTEM "article.dtd">

<ARTICLE name="XML" author="Shelley Powers"/>

XML in action
Though the standard is relatively new, there are several XML parsers that validate whether an XML document and its associated DTD fit the rules for a valid XML document. In addition, these same parsers may return the elements within a document exposed in their tree-like form — a form that can be used by applications.

XML is being used in the real world already. For example, Microsoft has defined an XML application it terms “Channel Definition Format,” or CDF. CDF files contain entities that describe the contents of an active channel. Following the accepted technique for XML, CDF files do not contain reference to a DTD file and instead use clues embedded within the tags and tag definitions to provide forward-looking information for the XML parser.

CDF’s purpose is to provide a document that defines the use of push technology at a specific Web site, including which pages are to be displayed as channels, what icons to display, what the update schedules are, etc. With this information, the XML processor provides the key elements that a channels-based application can use to control channel access on the Web site.

The following code shows the CDF file I have defined for use at my personal Web site. The root element for the file is the CHANNEL element. It is the parent element for several other elements, such as an ICON element, an ITEM element, and an ABSTRACT element. Each of the elements within the document may or may not have attributes, and a child element may in turn be the parent for another element:

<?XML VERSION="1.0" ENCODING="UTF-8"?>
<CHANNEL HREF="http://www.yasd.com/plus/index.htm" 
        BASE="http://www.yasd.com/plus/">
    <TITLE>YASD+</TITLE>
    <ABSTRACT>YASD+ pages, using the newest technologies</ABSTRACT>
    <LOGO HREF="http://www.yasd.com/mm/wide_logo.gif" STYLE="IMAGE-WIDE"/>
    <LOGO HREF="http://www.yasd.com/mm/logo.gif" STYLE="IMAGE"/>
    <LOGO HREF="http://www.yasd.com/mm/icon.gif" STYLE="ICON"/>
    <SCHEDULE>
        <INTERVALTIME DAY="1"/>
        <EARLIESTTIME HOUR="0"/>
        <LATESTTIME HOUR="12"/>
    </SCHEDULE>
    <ITEM HREF="http://www.yasd.com/samples/bytes/daily.htm">
        <LOGO HREF="http://www.yasd.com/mm/icon.gif" STYLE="ICON"/>
        <ABSTRACT>YASD Code Byte</ABSTRACT>
    </ITEM>
    <ITEM HREF="http://www.yasd.com/samples/bytes/cheap.htm">
        <LOGO HREF="http://www.yasd.com/mm/icon.gif" STYLE="ICON"/>
        <ABSTRACT>Cheap Page Tricks</ABSTRACT>
    </ITEM>
</CHANNEL>

Notice that the first line contains the XML declaration element, a version number, and an encoding declaration. The main entity within the document is the CHANNEL entity, enclosing other elements such as TITLE, ITEM, ABSTRACT, and LOGO. Each of these elements falls within the allowable XML definition for elements:

element ::= EmptyElemTag | STag content ETag 
EmptyElemTag ::= '<' Name (S Attribute)* S? '/>'
STag :: = '<' Name (S Attribute)* S? '>'
ETag::= '</' Name S? '>'
content ::= (element | CharData | Reference | CDSect | PI | Comment )*

Without continuing to resolve the non-terminating references, what the syntax just shown states is that each element is either an empty element, in which case it ends with a backslash/angle bracket combination (‘/>’), or it has start and end tags which enclose content. A “well-formed” constraint is placed on the start and end tags in that the NAME used in both is the same. The enclosed content can include other elements, comments, processing instructions, or other well-formed XML entities. Both empty and non-empty elements can have zero or more attributes, as the following demonstrates:

<CHANNEL HREF="http://www.yasd.com/plus/index.htm" 
        BASE="http://www.yasd.com/plus/">
...
</CHANNEL>

or

<INTERVALTIME DAY="1"/>

Internet Explorer 4.0 has an associated XML parser that pulls the element information out of the document. IE 4.0 uses this parsed element information to create the channel for the Web site, including the two sub-channel items, as shown below:

This site has a main Web page channel, denoted by the top-level graphic, and two sub-channels, with the second sub-channel loaded into the browser.

Accessing the CDF file directly with IE 4.0 opens a dialog box asking the individual how they would like to subscribe to the site’s channel, and allowing the reader to determine how and when the channel contents are downloaded to their client machine.

Other uses of XML
In addition to CDF, Microsoft and Marimba, Inc. have also proposed XML-based technology called the Open Software Description (OSD) format, which can be used to control software downloads and installations over a corporate network. A major IS expense for larger corporations, especially those that are geographically distributed, is installing and maintaining software upgrades on employees’ desktops. One small upgrade to a popular piece of software can take days of planning and weeks of actual implementation (i.e., walking around to each person’s desk and installing the upgrade). During the upgrade rollout, employees will have different versions of the same software, which can create problems. With OSD, software upgrades can be handled automatically using push technology, reducing both IS staff hours and logistical problems.

SGML and XML have both been used to create a Chemical Markup Language (CML) for the chemistry community. With the CML vocabulary, molecular structures can be defined within a document and the information can be either posted or transmitted. XML processors can pull out the CML elements and pass these to applications that perform actions like preparing a print-out of the information, either textually or graphically, or creating an online three-dimensional model of the information using VRML or some other 3D technology.

Netscape, Apple, and others have proposed a Meta Content Framework (MCF) created in XML that can expose a Web site structure for navigation or online exploration. MCF can be used to do such things as generating a three-dimensional site map which can be used for Web site publication and administration. The technology is currently used by Apple’s ProjectX/HotSauce browser, and “Xspace”-compatible content can also be viewed using a plug-in available from Apple.

XML can also be used to define a relational database meta-language, which can then be used to describe documents containing relational database information. These same documents can be easily generated from the relational database dictionaries, which are repositories of information about the information stored in the database. The extensible markup language can then be used to create context-centered documents like “all information pertaining to any purchases, week of January 16 through January 23,” rather than using the context-neutral database format. In addition, supporting information that is not part of the data in the database, like images or reference material, can be pulled into the document.

An XML processor can process this context-based data document and use the information therein to present reports, perform online research and queries, or even to create interactive three-dimensional models of the data. Instead of issuing a SQL statement such as:

select customer_name, customer_address, city, state, zip_code from customer, 
purchase_orderwhere purchase_order.order_id = 32245 and 
customer.customer_id = purchase_order.customer_id;

I could enter a three-dimensional VRML world at a purchase_order portal and scan a virtual filing cabinet for my purchase order number. Once I find it, I can open the door into another room with doors labeled “Purchase Order items” and “Customer” and open the Customer door into another room containing the information I am looking for. Best of all, the documents containing the context-based data could be generated automatically, processed automatically, and presented automatically. This means a change in the database table could be handled automatically.

Besides three-dimensional database applications, defining data in an XML document could be used as a method to convert database data in one format, such as relational data, into another format, such as object- based database records. The resources section at the end of this article has a reference to a preliminary XML representation of a relational database.

In addition, with XML processors (or XML parsers, if you prefer), the most difficult aspect of XML has already been implemented: pulling the entities out of the document.

Returning to the CDF example, not only can the XML document be used by Internet Explorer 4.0 to provide information about the structure of a Web site’s channels, I can also access the XML entities using JavaScript, C++, or Java and use the information for other purposes. For example, the following JavaScript functions open a CDF file, pull out information about the elements contained within the CDF file, and print out this information in a newly opened window.

<script language="jscript">
<!--
var doc = new ActiveXObject("msxml");
var wndw = null;

// display elements in CDF file
// file reference must be fully resolved Internet reference
function DisplayElements(cdffile)
{
// Display this with an appropriate message in a popup window
wndw = window.open("","CDFFile",
"resizable,scrollbars=yes");
wndw.document.open();
doc.URL = cdffile;

// begin displaying elements at root
displayElement(doc.root);

wndw.document.write("</body>");
wndw.document.close();

}

// display element tagname, if any
// and information about element such as any attributes (even 
// if undefined for element) and text and element type
function displayElement(elem) {
if (elem == null) return;
wndw.document.writeln("<p>");
if (elem.type == 0)
    wndw.document.writeln("Document contains element with 
                           tagname: " + elem.tagName);
else
    wndw.document.writeln("Document contains element with no tagname");
wndw.document.writeln("<br>Element is of type: " + 
                                GetType(elem.type) +"<br>");
wndw.document.writeln("Element text: " 
                                + elem.text + "<br>");
wndw.document.writeln("Element href: " 
                                + elem.getAttribute("href") + "<br>");
wndw.document.writeln("Element base: " 
                                + elem.getAttribute("base") + "<br>");
wndw.document.writeln("Element style: " 
                                + elem.getAttribute("style") + "<br>");
wndw.document.writeln("Element day: " 
                                + elem.getAttribute("day") + "<br>");
wndw.document.writeln("Element hour: " 
                                + elem.getAttribute("hour") + "<br>");
wndw.document.writeln("Element minute: " 
                                + elem.getAttribute("min") + "<br>");

// check to see if element has children
var elem_children = elem.children;
if (elem_children != null)
   for (var i = 0; i < elem_children.length; i++) {
      element_child = elem_children.item(i);
        displayElement(element_child);
   }

}

// element type
function GetType(type) { 
if (type == 0) 
        return "ELEMENT"; 
if (type == 1) 
        return "TEXT"; 
if (type == 2) 
        return "COMMENT"; 
if (type == 3) 
        return "DOCUMENT"; 
if (type == 4) 
        return "DTD"; 
else 
        return "OTHER";
}

//-->
</script>

See the Resources section for a pointer to an XML demonstration.

Creating an XML document
A key to the true usefulness of XML is that once an XML parser has been created to process an XML document, you can use it to parse out entity information from any document containing any well-formed XML content.

In the last section, I used Internet Explorer’s ability to parse XML entities, attributes, and content to create a Web page that listed the entities, their attributes, and some content. An interesting example, but not really useful. But what if I were to define my own XML document, including my own XML entities and attributes, and then use IE’s built-in XML parser to create my own graphic menu Web page application? This is fairly simple and only took a couple of hours of playing around to accomplish.

First, I defined my own CDF file and created my own entities, as shown here:

<?XML VERSION="1.0" ENCODING="UTF-8"?>

<DOCUMENT >
    <TITLE>YASD+</TITLE>
    <STYLESHEET HREF="http://www.yasd.com/css/daily.css" />
    <ITEM HREF="http://www.yasd.com/plus/plus.htm">
        <IMAGE HREF="http://www.yasd.com/plus/logo.jpg">
        <ALT>YASD+ Main Page</ALT>
        </IMAGE>
    </ITEM>
    <ITEM HREF="http://www.yasd.com/samples/bytes/daily.htm">
        <IMAGE HREF="http://www.yasd.com/plus/logo.jpg">
        <ALT>YASD Code Byte</ALT>
        </IMAGE>
    </ITEM>
    <ITEM HREF="http://www.yasd.com/samples/bytes/cheap.htm">
        <IMAGE HREF="http://www.yasd.com/plus/logo.jpg">
        <ALT>YASD Cheap Page Tricks</ALT>
        </IMAGE>
    </ITEM>
</DOCUMENT>

I redefined what ITEM is, created a new root element called “DOCUMENT,” and added some new elements of IMAGE, STYLESHEET, and ALT. I followed the XML convention for well-formed entities — opening up this document for parsing within IE 4.0 generates no errors.

I then created an application, consisting of two frames, that uses the images associated with the items to create a graphical menu bar in the top frame of the window and set the link associated with each image to open in the bottom frame of the window. The window originally opens with the form to access the CDF file and process its contents. This form is then overwritten with the processing results. The code for the form and to process the form contents is as follows:

 
<script language="jscript">
<!--
var doc = new ActiveXObject("msxml");
var wndw = null;

var title = "";
var stylesheet = "";
items = new Array();
itemimages = new Array();
itemalts = new Array();
ct = -1;

function createWindow(cdffile)
{
doc.URL = cdffile;

// find main document and any associated item documents
findElements(doc.root);

// if associated documents
if (ct > 0) {
  var strng = "<HTML><HEAD><TITLE>" + title + 
        "</TITLE><LINK REL=STYLESHEET TYPE='text/css'" +  
        " HREF='" + stylesheet + "'></HEAD><BODY>";
  for (var i = 0; i <= ct; i++) 
     strng+="<a href='" + items[i] + 
                "' target='Body'><IMG src='" + itemimages[i] + "' ALT='" + 
                itemalts[i] + "' border=0>" + 
                "</a>"; 
  strng+="</BODY></HTML>";
  document.open();
  document.writeln(strng);
  document.close();
  }
}

// display element tagname, if any
// and information about element such as any attributes (even if undefined for element)
// and text and element type
function findElements(elem) {
if (elem == null) return;
if (elem.type == 0) {
    if (elem.tagName == "TITLE")
        title = elem.text;
    if (elem.tagName == "STYLESHEET")
        stylesheet = elem.getAttribute("href");
    if (elem.tagName == "ITEM") {
        ct++;
          items[ct] = elem.getAttribute("href");
        }
    if (elem.tagName == "ALT") 
        itemalts[ct] = elem.text;
    if (elem.tagName == "IMAGE")
        itemimages[ct] = elem.getAttribute("href");
    }
        
// check to see if element has children
var elem_children = elem.children;
if (elem_children != null)
   for (var i = 0; i < elem_children.length; i++) {
      element_child = elem_children.item(i);
        findElements(element_child);
   }
}
//-->
</script>

I could have defined any elements within the XML document as long as I used well-formed XML entities, and I could process the results in virtually any way I desired just by using simple scripting techniques.

Linking and style information
In addition to the XML specification, other efforts are currently underway to add supporting specifications. The first is XML part 2, which includes linking. Another is XSL, the Extensible Style Language, which defines an XML stylesheet.

Linking has been extended considerably with XML. You can specify an attribute that determines how a resource is displayed, specify whether the resource is displayed automatically, and even specify multiple layers of linkage. Of particular interest is the capability to define a group of links, associating documents together in such a way that the person following the links does not have to hunt around for related documents. If you have ever jumped to a Web site page by following a link from another site, you know how frustrating it can be to try establish the context of the link in order to find related documents.

XSL would be specified using XML and would provide a way to define presentation elements, such as those used currently in HTML. For example, HTML includes the Emphasis element, delimited with <EM> </EM> tags, the Strong element, delimited with <STRONG> </STRONG>, and others. With XSL, you could create styles to provide recommendations for how an XML entity is rendered.

The downside to XML
While XML’s implementation-neutral technique allows parsed information to be used for multiple purposes in multiple applications, it is this same flexibility that may cause problems.

Returning one last time to my CDF example, I created a simple JavaScript application that opens the main channel page and all the associated pages into a frames-based Web page. The main page opens into the top-most frame, and each individual CDF ITEM element opens into one of the smaller frames located along the bottom of the document.

This isn’t a problem for my own CDF file, which is relatively simple. Applying the same application to another CDFfile, however — one I neither created nor control — creates a Web page that probably does not meet the expectations of the page’s designer. The following screen shot shows the result of using the frames-generation application on the IDG.net channel:

To create this page, I used a publicly accessible file, IDG.net’s CDF file, and exposed the XML elements to create a presentation neither Microsoft nor IDG.net intended. Even with the new effort on XSL, currently only a W3C proposal, there is no guarantee that the information exposed with XML will be used for anything approaching the intended purpose of the XML document’s original creator.

Another potential problem area with XML is the CDF specification. CDF’s potential is great; you could use it to build an XML-based document that could be used by different push technology vendors with relatively comparable results. But what happens if a vendor supports channels but doesn’t want to use CDF? Do we end up with different “flavors” of channels? Does the W3C then create a different standards specification for channels, another for chemistry, another for math, another for finance, and so on in order to ensure that only one specification for each “topic” or “business” is created? Or can we design tools for translating between each of the XML document definitions?

In conclusion
Even with these issues at stake, XML is a terrific addition to Web and other application development. One of the most difficult aspects in application programming is extracting the structure as well as the contents of documents. XML has made this process a whole lot easier.

During the recent XML/SGML conference in Washington DC (December10-12), XML became a proposed recommendation of the W3C, the last remaining step before becoming a real recommendation. It may be only a matter of time before XML is just as common as SQL is today.

Categories
JavaScript

Netscape Navigator’s JavaScript 1.1 vs Microsoft Internet Explorer’s JScript

Originally appeared in Digital Cats magazine. Found courtesy Wayback Machine.

Prior to Netscape implementing JavaScript in Netscape Navigator, web developers had few tools to create interactive content for their web pages. Now this scripting language gives developers the ability to do things such as check form contents, communicate with the user based on their actions, and modify the web page dynamically without the web page being re-loaded and without the use of Java, plug-ins or ActiveX controls.

Unfortunately, JavaScript was not usable by any other browser until Microsoft released Internet Explorer (IE) 3.0. With this release web developers could deliver interactive content that would at least work with the two most widely used browsers. Or could they?

On the surface, the JavaScript supported by both companies is identical. They both provide the same conditional control statements, have defined objects such as window or document,and can be used directly in HTML documents. They both support events based on user actions and support functions in a similar manner. However, this article will demonstrate that though the languages may look the same on the surface, there are differences that can trip the unwary developer.

JavaScript Objects

To understand the differences between the two implementations of JavaScript you must examine the objects both support. As an example, with Navigator 3.0 Netscape provides a new object image which is an array (defined as images that contains the images in the document currently loaded. This object allows the developer to change the images of a document without re-loading the document or using Java or other technique. With this capability the developer can write the following JavaScript code section without error:


sSelected = "http://www.some.com/some.gif"
document.images[iIndex].src = sSelected

This code will change the src property of the image that is contained in the array at the index given in the variable iIndex. If this variable contained the value 2, the 3rd image as loaded in the document (the array indices begin at 0) would be changed to the image located in the given URL. An example using images can be found here.

Running the same example with Internet Explorer will result in a alert message that states that “‘images’ is not an object”.

Other examples of objects that are defined for Netscape Navigator but not for Microsoft Internet Explorer are:

  • The Area object, which is an array of links for an image map that allows the developer to capture certain events for the image map that can be used to provide additional information to the user. With this, the developer can capture a mouseOver event to write out information about the link in the status bar.
  • The FileUpload object which provides a text like control and a button marked with “Browse” that will allow a reader to enter a file name. The JavaScript can then access the name of the file.
  • The Function object which allows the developer to define and assign a function to a variable which can then be assigned to an event.
  • The mimeTypes Array of supported MIME types.
  • The option object which is an array of the options implemented for SELECT and which allows the developer to change the text of the option at runtime
  • The applet object, which is an array of Applets in the document (read-only)
  • The plugin object, which is an array called embeds that contains the plug-ins contained in the document (read-only)
  • The plugins array, which is an array of plug-ins currently installed in the client browser

At this time there are no JavaScript or JScript objects defined for Internet Explorer that are also not defined for Netscape. However, as JScript is an implementation script for IE and Microsoft has defined their own IE scripting model, this could change in the future.

JavaScript Object Behavior and Ownership

Internet Explorer may not have additional objects but it has defined a different hierarchy and ownership for some of the objects that are used by both it and Navigator. All objects are contained within the window object in the IE scripting model, which can be viewed here, but not all objects are owned by window with the Navigator model, which can be viewed with the JavaScript Authoring Guide. The object Navigator, which is the object that stores information about the browser currently being used, is an example of an owned object by window in IE but not in Navigator.

This will not present an incompatibility problem between the two browsers as the developer will usually not preface the object with the term “window” as the following code demonstrates:


<FORM NAME="form1">
<input type=button value='press' onClick="alert(navigator.appName)">
</FORM>

The above code will work with both browsers.

The differences between the ownership can become a problem when an object is owned by different levels of objects. An example is the history object, which is owned by the window object in IE, but by the document object in Navigator. When used in the current window and document, the object will work the same as the following code will demonstrate:


<FORM NAME="form1">
<input type=button value='press' onClick="history.back()">
</FORM>
 

The reason the same code can work for both is that window is assumed for both IE and Netscape and document is assumed for Navigator, at least in this instance because history is also an object in its own right. In the case of a document being opened as part of a frame, the differences then become noticeable. The following code will work when the document is opened as a frame in IE, but will not work in Navigator:


<body>
<script>
function clicked() {
history.back()
}
</script>
<FORM NAME="form1">
<input type=button value='press' onClick="clicked()">
</FORM>
</body>

Clicking on the button from the code above will work for IE. The previous document in the History list will be opened, but the same code will not work for Navigator. Clicking on the button will result in neither a change of document nor an error. Prefacing the history object with parent will enable this code to work with both browsers.

JavaScript Properties

Even when IE and Navigator share a common object and a common object ownership, they can differ on the properties for an object. An example is the document object. The properties for both implementations are the same except for an URL property for the Navigator implementation and a location property for the IE implementation. However, if you examine both properties, they are identical! Both contain the URL of the document. Both are read-only. The following code will work with Navigator, but results in an empty Alert message box for IE:


<FORM NAME="form1">
<input type=button value='press' onClick="alert(document.URL)">
</FORM>

According to Microsoft documentation, the equivalent for IE would be to use document.location.href. However, though this does not result in an error, it also results in an empty alert box. The following code achieves the desired results and, happily, works in both browsers:


<FORM NAME="form1">
<input type=button value='press' onClick="alert(location.href)">
</FORM>

The above example does demonstrate another area of caution when using the JavaScript language: this language is unstable in both environments and is changing continuously. Don’t assume something will work because the documentation states it will, and don’t assume it will work the same on all operating systems. Both browsers can have different behaviors across different operating systems, sometimes because of operating system differences and sometimes because of bugs that were missed during testing on that specific OS.

JavaScript Methods and Events

A web developer can find ways of working around differences in objects and properties, but working around differences in methods may not be so easy. When we develop we expect a certain behavior to result when we call a specific function and pass to it certain parameters. With Microsoft Internet Explorer and Netscape Navigator, the best case scenario is that we can use a pre-defined object method with both browsers and have the same result. The worst case scenario is that the method works with both browsers, but the result is different.

An example of the best case scenario is to use JavaScript to validate form field contents which have changed or to use these contents to calculate a value used elsewhere. Calling a JavaScript function from the onChange event to process the changed contents as demonstrated below will work with both browsers:


<!--- Form fields
<p>Item Quantity: <INPUT TYPE="text" Name="qty">
Item Cost: <INPUT TYPE="text" Name="cost"
                onChange="NewCost()">
Total Cost: <INPUT TYPE="text" Name="total" Value=0>
…
<!--- Function
<SCRIPT LANGUAGE="javascript">
<!--- hide script from old browsers

// NewCost will
// calculate cost of qty and item
function NewCost() {
        var iCost = parseFloat(document.Item.cost.value)
        var iQty = parseInt(document.Item.qty.value)

        var iTotal = iCost * iQty
        document.Item.total.value = iTotal
        }

The above will work as expected with both IE and Navigator. When the user enters a quantity and a cost, the onChange event will fire for the cost field and a JavaScript function called NewCost() will be called. This function will call two built-in JavaScript functions, parseFloat() and parseInt(), to access and convert the form field values. These will then be used to compute a total which is placed in the total field.

So far so good. Another JavaScript function in the web page will be processed when the user presses the submit button. This pre-defined button style will normally submit the form. The developer can capture the submission and perform validation on the fields. Coding this for Navigator would look like the following:


<FORM NAME="Item"
        ACTION="some.cgi" onSubmit="return SendOrder()">
…
<!--- Function
// submit order
function SendOrder() {

        // validate data
        if (document.Item.Name.value == "") {
                alert("You must enter your name")
                return false
                }
        return true
        }

Capturing the onSubmit event will allow the developer to call a function to process the form fields. If they choose, they can perform validation in this function. If the validation fails, say the user did not provide a name, the function notifies the reader and returns false, preventing the form from being submitted. If the user did provide a name, the function would return true, and the form would be submitted.

Following the documentation that can be found at the Microsoft site, the developer would expect something like this to work for IE as well as Navigator. It does, to a point.

With IE the onSubmit event is captured and the SendOrder() function is called. If the user did not enter a name value, an alert would occur. The behavior is the same for both browsers at this point. However, if the user does provide a value, Navigator would then submit the form and a follow-up form would be displayed. This does NOT occur with IE IF you are testing the page locally, probably due to a bug missed during the testing. It does work if you run the web page documents through a web server.

However, without knowing that the difference between the two results was a matter of document location rather than document coding the web page developer could have spent considerable time trying to get the same behavior for both browsers.

Aside from the differences already noted, the browsers may process code in a funtionally identical manner and yet perform quite differently. This can be demonstrated with another popular use of JavaScript which is to open a secondary window for some purpose and to maintain communication between the two windows. This is widely used by Netscape for their tutorials.

Both browsers support a property for the window object called opener. This property can be used to contain a reference to the window that opened the secondary window.

The following code demonstrates using JavaScript to open a secondary window and to set the opener property to the original window:


<HTML>
<HEAD><TITLE> Original Window </TITLE>
<SCRIPT LANGUAGE="JavaScript">
<!--- hide script from old browsers
// OpenSecondary will open a second window
//
function OpenSecond(iType, sMessage) {
        // open window
        newWindow=window.open("second.htm","",
                "toolbar=no,directories=no,width=500,height=300")
        // modify the new windows opener value to
        // point to this window
        if (newWindow != null && newWindow.opener == null)
                newWindow.opener=window

        }
// end hiding from old browsers -->
</SCRIPT>
</HEAD>
<BODY>
<H1> Open a new Window and get information</H1>

<FORM NAME="CallWindow">
<p>Click to open Window:
<p>
<INPUT TYPE="button" NAME="OpenWin" VALUE="Click Here"
        onClick="OpenSecond()">
<p>
</FORM>
</BODY>
</HTML>

The above HTML and JavaScript creates a simple document with one button. Pressing the button opens a new window (creates a new instance of the browser) that does not have a toolbar or directories and is set to a certain width and height. The HTML source document that is opened into this new window is “second.htm”.

The HTML and JavaScript in the secondary window is shown below:


<HTML>
<HEAD><TITLE> Information</TITLE>

<SCRIPT LANGUAGE="JavaScript">
<!--- hide script from old browsers
// SetInformation
// function will get input values
// and set to calling window
function SetInformation() {
        opener.document.open()
        opener.document.write("<BODY>")
        opener.document.write("<H1> Return from Secondary</h1>")
        opener.document.write("</BODY>")
        opener.document.close()
        opener.document.bgColor="#ff0000"
        window.close()
        }
// end hiding from old browsers -->
</SCRIPT>
</HEAD>
<BODY>
<p><form>
Click on the button:<p>
<INPUT type="button" Value="Click on Me"
     onClick="SetInformation()">
</CENTER>
</FORM>
</BODY>
</HTML>

This code will display a button labeled “Click on Me”. Pressing this button will result in the document page for the original window being modified to display the words “Return from Secondary”. The JavaScript will also change the background color of the original document and then will close the secondary window. When run in Navigator, the sample behaves as expected. Not so, however, with IE.

First, when you open the secondary window in IE you will notice that the document in the original window seems to blank out for a moment. In addition, the secondary window opens at the top left hand side of the desktop with IE but opens directly over the original window with Navigator, no matter where that original window is.

When you press the button that modifies the original document, IE does modify the document with the new header, as Navigator does, and the background on the original document will change briefly. However, when the secondary window is closed the background color of the original document returns to the original color!

What is worse is that running this sample for a few times with IE will cause the browser to crash! How soon it will crash seems to suggest that resources are not being freed, or are being freed incorrectly. Whatever the cause, this behavior should make a developer feel cautious about opening up a secondary window within IE.

Solutions to working with both Internet Explorer and Navigator

JavaScript is a useful tool for creating interactive content without using Java or some other technique. As we have seen, problems arise out of the incompatibility between Navigator and IE. What are ways to avoid these problems?

  • Code for one browser only. This is not really a viable solution. While Netscape Navigator is the most popular browser in use today, Microsoft Internet Explorer is gaining quite a following. Using Navigator-only JavaScript that will limit your web page’s audience.
  • Code only to the least common denominator. By limiting the JavaScript to that which works for both Navigator and IE, developers will have access to most of the functionality they need. However, with this approach developers will need to be aware of the gotchas that have been discussed in this article. In other words, the developer has to test with both browsers; the tests will have to occur via the web server as well as run locally; the tests should be repeated several times to ensure that no adverse effects show up over time; the code should be tested with all possible environments.
  • Code for each browser within the same page. This is actually my favorite approach though it will require more effort by the developer. Both browsers will process JavaScript labeled as <SCRIPT LANGUAGE=”javascript”>, however only Navigator will process script labeled as <SCRIPT LANGUAGE=”javascript1.1″>. With this approach, the developer can place JavaScript common to both browsers in a SCRIPT tag labeled with “javascript” and Navigator specific code in a SCRIPT tag labeled with “javascript1.1”. To add in IE specific code, the developer would probably want to use VBScript code or use the tag JScript whenever applicable. At this time, JScript is implemented for scripting with events only, not as a language specification for the SCRIPT tag.

Summary

JavaScript is a very effective tool, and a relatively simple method for adding interactive content to a web page. With version 3.0 of Internet Explorer, using JavaScript is viable for both of the most popular browsers in use. However, developersneeds to be aware of the differences between Netscape Navigator and Microsoft Internet Explorer and should test thoroughly with both before posting the page to their site.

Categories
JavaScript

Netscape Navigator’s JavaScript 1.1 vs Microsoft Internet Explorer’s JScript

Originally published at Digital Cats, now archived at the Wayback Machine

Prior to Netscape implementing JavaScript in Netscape Navigator, web developers had few tools to create interactive content for their web pages. Now this scripting language gives developers the ability to do things such as check form contents, communicate with the user based on their actions, and modify the web page dynamically without the web page being re-loaded and without the use of Java, plug-ins or ActiveX controls.

Unfortunately, JavaScript was not usable by any other browser until Microsoft released Internet Explorer (IE) 3.0. With this release web developers could deliver interactive content that would at least work with the two most widely used browsers. Or could they?

On the surface, the JavaScript supported by both companies is identical. They both provide the same conditional control statements, have defined objects such as window or document,and can be used directly in HTML documents. They both support events based on user actions and support functions in a similar manner. However, this article will demonstrate that though the languages may look the same on the surface, there are differences that can trip the unwary developer.

JavaScript Objects

To understand the differences between the two implementations of JavaScript you must examine the objects both support. As an example, with Navigator 3.0 Netscape provides a new object image which is an array (defined as images that contains the images in the document currently loaded. This object allows the developer to change the images of a document without re-loading the document or using Java or other technique. With this capability the developer can write the following JavaScript code section without error:


sSelected = "http://www.some.com/some.gif"
document.images[iIndex].src = sSelected

This code will change the src property of the image that is contained in the array at the index given in the variable iIndex. If this variable contained the value 2, the 3rd image as loaded in the document (the array indices begin at 0) would be changed to the image located in the given URL. An example using images can be found here.

Running the same example with Internet Explorer will result in a alert message that states that “‘images’ is not an object”.

Other examples of objects that are defined for Netscape Navigator but not for Microsoft Internet Explorer are:

  • The Area object, which is an array of links for an image map that allows the developer to capture certain events for the image map that can be used to provide additional information to the user. With this, the developer can capture a mouseOver event to write out information about the link in the status bar.
  • The FileUpload object which provides a text like control and a button marked with “Browse” that will allow a reader to enter a file name. The JavaScript can then access the name of the file.
  • The Function object which allows the developer to define and assign a function to a variable which can then be assigned to an event.
  • The mimeTypes Array of supported MIME types.
  • The option object which is an array of the options implemented for SELECT and which allows the developer to change the text of the option at runtime
  • The applet object, which is an array of Applets in the document (read-only)
  • The plugin object, which is an array called embeds that contains the plug-ins contained in the document (read-only)
  • The plugins array, which is an array of plug-ins currently installed in the client browser

At this time there are no JavaScript or JScript objects defined for Internet Explorer that are also not defined for Netscape. However, as JScript is an implementation script for IE and Microsoft has defined their own IE scripting model, this could change in the future.

JavaScript Object Behavior and Ownership

Internet Explorer may not have additional objects but it has defined a different hierarchy and ownership for some of the objects that are used by both it and Navigator. All objects are contained within the window object in the IE scripting model, which can be viewed here, but not all objects are owned by window with the Navigator model, which can be viewed with the JavaScript Authoring Guide. The object Navigator, which is the object that stores information about the browser currently being used, is an example of an owned object by window in IE but not in Navigator.

This will not present an incompatibility problem between the two browsers as the developer will usually not preface the object with the term “window” as the following code demonstrates:


<FORM NAME="form1">
<input type=button value='press' onClick="alert(navigator.appName)">
</FORM>

The above code will work with both browsers.

The differences between the ownership can become a problem when an object is owned by different levels of objects. An example is the history object, which is owned by the window object in IE, but by the document object in Navigator. When used in the current window and document, the object will work the same as the following code will demonstrate:


<FORM NAME="form1">
<input type=button value='press' onClick="history.back()">
</FORM>

The reason the same code can work for both is that window is assumed for both IE and Netscape and document is assumed for Navigator, at least in this instance because history is also an object in its own right. In the case of a document being opened as part of a frame, the differences then become noticeable. The following code will work when the document is opened as a frame in IE, but will not work in Navigator:


<body>
<script>
function clicked() {
history.back()
}
</script>
<FORM NAME="form1">
<input type=button value='press' onClick="clicked()">
</FORM>
</body>

Clicking on the button from the code above will work for IE. The previous document in the History list will be opened, but the same code will not work for Navigator. Clicking on the button will result in neither a change of document nor an error. Prefacing the history object with parent will enable this code to work with both browsers.

JavaScript Properties

Even when IE and Navigator share a common object and a common object ownership, they can differ on the properties for an object. An example is the document object. The properties for both implementations are the same except for an URL property for the Navigator implementation and a location property for the IE implementation. However, if you examine both properties, they are identical! Both contain the URL of the document. Both are read-only. The following code will work with Navigator, but results in an empty Alert message box for IE:


<FORM NAME="form1">
<input type=button value='press' onClick="alert(document.URL)">
</FORM>

According to Microsoft documentation, the equivalent for IE would be to use document.location.href. However, though this does not result in an error, it also results in an empty alert box. The following code achieves the desired results and, happily, works in both browsers:


<FORM NAME="form1">
<input type=button value='press' onClick="alert(location.href)">
</FORM>

The above example does demonstrate another area of caution when using the JavaScript language: this language is unstable in both environments and is changing continuously. Don’t assume something will work because the documentation states it will, and don’t assume it will work the same on all operating systems. Both browsers can have different behaviors across different operating systems, sometimes because of operating system differences and sometimes because of bugs that were missed during testing on that specific OS.

JavaScript Methods and Events

A web developer can find ways of working around differences in objects and properties, but working around differences in methods may not be so easy. When we develop we expect a certain behavior to result when we call a specific function and pass to it certain parameters. With Microsoft Internet Explorer and Netscape Navigator, the best case scenario is that we can use a pre-defined object method with both browsers and have the same result. The worst case scenario is that the method works with both browsers, but the result is different.

An example of the best case scenario is to use JavaScript to validate form field contents which have changed or to use these contents to calculate a value used elsewhere. Calling a JavaScript function from the onChange event to process the changed contents as demonstrated below will work with both browsers:


<!--- Form fields
<p>Item Quantity: <INPUT TYPE="text" Name="qty">
Item Cost: <INPUT TYPE="text" Name="cost"
                onChange="NewCost()">
Total Cost: <INPUT TYPE="text" Name="total" Value=0>
…
<!--- Function
<SCRIPT LANGUAGE="javascript">
<!--- hide script from old browsers

// NewCost will
// calculate cost of qty and item
function NewCost() {
        var iCost = parseFloat(document.Item.cost.value)
        var iQty = parseInt(document.Item.qty.value)

        var iTotal = iCost * iQty
        document.Item.total.value = iTotal
        }

The above will work as expected with both IE and Navigator. When the user enters a quantity and a cost, the onChange event will fire for the cost field and a JavaScript function called NewCost() will be called. This function will call two built-in JavaScript functions, parseFloat() and parseInt(), to access and convert the form field values. These will then be used to compute a total which is placed in the total field.

So far so good. Another JavaScript function in the web page will be processed when the user presses the submit button. This pre-defined button style will normally submit the form. The developer can capture the submission and perform validation on the fields. Coding this for Navigator would look like the following:


<FORM NAME="Item"
        ACTION="some.cgi" onSubmit="return SendOrder()">
…
<!--- Function
// submit order
function SendOrder() {

        // validate data
        if (document.Item.Name.value == "") {
                alert("You must enter your name")
                return false
                }
        return true
        }

Capturing the onSubmit event will allow the developer to call a function to process the form fields. If they choose, they can perform validation in this function. If the validation fails, say the user did not provide a name, the function notifies the reader and returns false, preventing the form from being submitted. If the user did provide a name, the function would return true, and the form would be submitted.

Following the documentation that can be found at the Microsoft site, the developer would expect something like this to work for IE as well as Navigator. It does, to a point.

With IE the onSubmit event is captured and the SendOrder() function is called. If the user did not enter a name value, an alert would occur. The behavior is the same for both browsers at this point. However, if the user does provide a value, Navigator would then submit the form and a follow-up form would be displayed. This does NOT occur with IE IF you are testing the page locally, probably due to a bug missed during the testing. It does work if you run the web page documents through a web server.

However, without knowing that the difference between the two results was a matter of document location rather than document coding the web page developer could have spent considerable time trying to get the same behavior for both browsers.

Aside from the differences already noted, the browsers may process code in a funtionally identical manner and yet perform quite differently. This can be demonstrated with another popular use of JavaScript which is to open a secondary window for some purpose and to maintain communication between the two windows. This is widely used by Netscape for their tutorials.

Both browsers support a property for the window object called opener. This property can be used to contain a reference to the window that opened the secondary window.

The following code demonstrates using JavaScript to open a secondary window and to set the opener property to the original window:


<HTML>
<HEAD><TITLE> Original Window </TITLE>
<SCRIPT LANGUAGE="JavaScript">
<!--- hide script from old browsers
// OpenSecondary will open a second window
//
function OpenSecond(iType, sMessage) {
        // open window
        newWindow=window.open("second.htm","",
                "toolbar=no,directories=no,width=500,height=300")
        // modify the new windows opener value to
        // point to this window
        if (newWindow != null && newWindow.opener == null)
                newWindow.opener=window

        }
// end hiding from old browsers -->
</SCRIPT>
</HEAD>
<BODY>
<H1> Open a new Window and get information</H1>

<FORM NAME="CallWindow">
<p>Click to open Window:
<p>
<INPUT TYPE="button" NAME="OpenWin" VALUE="Click Here"
        onClick="OpenSecond()">
<p>
</FORM>
</BODY>
</HTML>

The above HTML and JavaScript creates a simple document with one button. Pressing the button opens a new window (creates a new instance of the browser) that does not have a toolbar or directories and is set to a certain width and height. The HTML source document that is opened into this new window is “second.htm”.

The HTML and JavaScript in the secondary window is shown below:


<HTML>
<HEAD><TITLE> Information</TITLE>

<SCRIPT LANGUAGE="JavaScript">
<!--- hide script from old browsers
// SetInformation
// function will get input values
// and set to calling window
function SetInformation() {
        opener.document.open()
        opener.document.write("<BODY>")
        opener.document.write("<H1> Return from Secondary</h1>")
        opener.document.write("</BODY>")
        opener.document.close()
        opener.document.bgColor="#ff0000"
        window.close()
        }
// end hiding from old browsers -->
</SCRIPT>
</HEAD>
<BODY>
<p><form>
Click on the button:<p>
<INPUT type="button" Value="Click on Me"
     onClick="SetInformation()">
</CENTER>
</FORM>
</BODY>
</HTML>

This code will display a button labeled “Click on Me”. Pressing this button will result in the document page for the original window being modified to display the words “Return from Secondary”. The JavaScript will also change the background color of the original document and then will close the secondary window. When run in Navigator, the sample behaves as expected. Not so, however, with IE.

First, when you open the secondary window in IE you will notice that the document in the original window seems to blank out for a moment. In addition, the secondary window opens at the top left hand side of the desktop with IE but opens directly over the original window with Navigator, no matter where that original window is.

When you press the button that modifies the original document, IE does modify the document with the new header, as Navigator does, and the background on the original document will change briefly. However, when the secondary window is closed the background color of the original document returns to the original color!

What is worse is that running this sample for a few times with IE will cause the browser to crash! How soon it will crash seems to suggest that resources are not being freed, or are being freed incorrectly. Whatever the cause, this behavior should make a developer feel cautious about opening up a secondary window within IE.

Solutions to working with both Internet Explorer and Navigator

JavaScript is a useful tool for creating interactive content without using Java or some other technique. As we have seen, problems arise out of the incompatibility between Navigator and IE. What are ways to avoid these problems?

  • Code for one browser only. This is not really a viable solution. While Netscape Navigator is the most popular browser in use today, Microsoft Internet Explorer is gaining quite a following. Using Navigator-only JavaScript that will limit your web page’s audience.
  • Code only to the least common denominator. By limiting the JavaScript to that which works for both Navigator and IE, developers will have access to most of the functionality they need. However, with this approach developers will need to be aware of the gotchas that have been discussed in this article. In other words, the developer has to test with both browsers; the tests will have to occur via the web server as well as run locally; the tests should be repeated several times to ensure that no adverse effects show up over time; the code should be tested with all possible environments.
  • Code for each browser within the same page. This is actually my favorite approach though it will require more effort by the developer. Both browsers will process JavaScript labeled as <SCRIPT LANGUAGE=”javascript”>, however only Navigator will process script labeled as <SCRIPT LANGUAGE=”javascript1.1″>. With this approach, the developer can place JavaScript common to both browsers in a SCRIPT tag labeled with “javascript” and Navigator specific code in a SCRIPT tag labeled with “javascript1.1”. To add in IE specific code, the developer would probably want to use VBScript code or use the tag JScript whenever applicable. At this time, JScript is implemented for scripting with events only, not as a language specification for the SCRIPT tag.

Summary

JavaScript is a very effective tool, and a relatively simple method for adding interactive content to a web page. With version 3.0 of Internet Explorer, using JavaScript is viable for both of the most popular browsers in use. However, developersneeds to be aware of the differences between Netscape Navigator and Microsoft Internet Explorer and should test thoroughly with both before posting the page to their site.

Categories
JavaScript Technology

Using Dynamic HTML to create an animated menubar

Originally published in Netscape World, now archived at the Wayback Machine

Microsoft and Netscape decided to use two different techniques for Dynamic HTML. Microsoft bases its approach on exposing CSS1 (Cascading Style Sheets) attributes to script, with a little help from some interesting new built-in, lightweight, and windowless ActiveX controls. Netscape bases much of its approach on the new LAYER tag.

At first glance, the approaches seem incompatible — using one browser’s techniques will not work with the other. However, you can use both browsers’ techniques within the same page and generate the exact same result.

In this article, I create an animated menu bar using a combination of CSS1 style sheets, the PATH ActiveX control, and dynamically modifying HTML elements to work with IE 4.0. I create the exact same effect using CSS1 style sheets and the LAYER tag for Navigator 4.0. Note, though, that both IE 4.0 and Navigator 4.0 are works in progress, and this example may need to be modified, slightly, for future versions of either product.

Creating style sheetsThe first section of the example page is the CSS1 style sheet settings. Both IE 4.0 and Navigator 4.0 process these style sheets, though Navigator does not seem to like setting images using the IMG tag at this time.

This example image uses headers for the text-based portion of a menu bar. To create the effect I want, I don’t want the standard underline that occurs with hypertext links, and I do want to modify the font size and color. As I don’t want either of these changes to impact on the rest of the document, I use the cascading effect of CSS1 to apply these changes only to links contained within <H2> header tags:

h2 A { text-decoration: none; color: gold } 
h2 A:link { color: gold } 
h2 A:visited { color: gold }

Next, I create the style sheet definitions for the menu images, for use with IE 4.0 only. I use absolute positioning to place the images exactly where I want on the page, and use the visibility property to hide the images when the page is first opened:

#menu1 { position: absolute; left: 0; top: 0; 
	visibility: hidden}
#menu2 { position: absolute; left: 142; top: 0; 
	visibility: hidden}
#menu3 { position: absolute; left: 284; top: 0; 
	visibility: hidden}
#menu4 { position: absolute; left: 192; top: 0; 
	visibility: hidden}
#menu5 { position: absolute; left: 142; top: 192;
	visibility: hidden }
#menu6 { position: absolute; left: 284; top: 192; 
	visibility: hidden}

The final part of the CSS1 style sheet definition creates the text-based menu components of the menu bar. These show as soon as the page is opened, and if the Web page reader does not want to wait for the images, or has image downloading turned off, they can access the links via the text menu. The size of the area for the menu text item should be large enough to contain the complete text, otherwise odd behavior will result with Internet Explorer: It does not display the text correctly when you click on a text-based menu item. Another text-based style sheet rule is provided for a message that is displayed while the images are loading. Whenever you create content that may be invisible or not displayed for a time, provide some kind of feedback to the user about what is happening:

This is the final section of the CSS style sheet definitions.

Adding images to a Web pageThe next section in the example page is the scripting, but I will talk about that a bit later. For now, I will add the images to the Web page using two different techniques, one for IE 4.0, and one for Navigator 4.0. IE 4.0 uses the style sheet settings defined for the images, and references the appropriate definition by using the identifier of the style sheet rule. The Navigator technique is to embed the images within layers that are hidden when the page first loads. IE 4.0 ignores the LAYER tag, and Navigator ignores the image style sheet rules:

Note that a hypertext link reference is applied to the image, and the border is set to 0. As the image style sheet rules seem to be ignored by Navigator, important image information such as widthheight, and border are specified within the image tag.

Next, the text objects are added to the menu bar. This includes a text-based alternative that labels each image when it is displayed, or can be accessed directly if the image is not displayed. This also includes a message stating that the images for the menu bar are being loaded:

The “waiting…” text is placed within a LAYER tag as I need to add script to modify it later, and only layer-based elements can be modified with Navigator at this time.

The final objects to add to the page are six ActiveX PATH objects, to control the menu bar animations for IE 4.0. A path object can be used to specify both X and Y coordinates at specific tick marks and moves the visual object associated with the control along that path. Two of the parameters for the control are the X path coordinates and the Y path coordinates. Another parameter could also control the timer, but I want to synchronize my image movement, so I use a different script-based approach later:

Notice that the X, Y coordinates for each path object are different, but all of them have the same number of timing ticks, which is the first parameter given in each of the coordinate pairings. The tick timings given are in microseconds.

The PATH ActiveX controls are the last elements placed into the page. Next comes the fun part, animating the menu bar.

Adding the script to animate the menu barThe animation is started when the page loads by trapping the onLoad event for the document. This calls a function called cycle. This function is implemented in both VBScript and JavaScript, and the appropriate browser picks the appropriate implementation, with Microsoft grabbing the VBscript version, Navigator grabbing the JavaScript version.

The first script controls the menu bar for IE 4.0. This is written entirely in VBScript, though JavaScript could be used if browser differences are handled correctly. The cycle function sets the Target properties of the path objects to the style sheet rules of the menu bar images. This associates each path control with its visual object. Next, the images are set to be visible, and the “waiting..” text is hidden.

The Play method for each path control is called, beginning the animation process, though no movement occurs yet. Why? No movement occurs because no timing mechanism has been associated with each control. The timing is handled by using the setTimeout function and calling a second subroutine that handles the image animation. The complete text of the cycle subroutine is here:

I use my own timer to synchronize the images, a technique that Microsoft recommends when using more than one PATH control on the same Web page.

The MoveIEObjects subroutine calls the Tick method for each of the path controls, moving each of the objects to the next coordinate defined for the specific control. It issues another setTimeout function call to continue the animation process, after first testing to see if the last movement of the path has occurred (the last of the ticks, of which there are eight for this particular demonstration). Note that I did not necessarily have to test the tick movement because after the path has completely played, it no longer moves unless it is rewound. However, I want to make sure the timer is not still operating. The complete text of MoveIEObjects is given next:

Next, I add the JavaScript to control the animation for Navigator 4.0. The cycle function for Navigator is similar to that for IE 4.0, except that I need to create my own arrays of X and Y coordinates. These arrays, in turn, are set to hold other arrays holding the actual coordinates. After the arrays are created, the images are displayed and the timer is started, as seen next:

The final script is for the MoveObjects function for Navigator. The LAYER tag method moveTo is used to move each of the images to the new coordinate for this timer event. Note that the timer values are set to be much larger than the ones set for IE 4.0 as the PATH control does run a bit slower than using the LAYER tag approach, and I wanted both effects to be as similar as possible. MoveObjects can be seen next:

Note that resizing Navigator can misalign the images. Netscape recommends a blank document.write statement in JavaScript to compensate for this type of problem, but this does not work for this example. I will continue to investigate this and will post a fix to my Web site when one appears. In the meantime, if you resize the Web page you need to reload the example. No problem occurs when you resize IE.

That’s it for the scripting. You can test the example yourself if you are using either IE 4.0 or Netscape 4 (this script will not work on earlier browsers). View the complete source by using the appropriate “View Source” option of your browser.

 

Categories
Critters Writing

A Tale of 2 Monsters Part 4: Nessie, the Loch Ness Monster

Recovered from the Wayback Machine.

There are many creatures that live in our myths and our minds, but the most famous is probably Scotland’s Nessie, or the Loch Ness Monster. But first, let me digress and talk about another lake monster, one a little closer to home: Lake Champlain’s Champ.

We used to live on a farm on the shore of Lake Champlain in Vermont. You might know Lake Champlain as home of, among other things, Champ, the Lake Champlain Monster.

Between our home and our next door neighbor’s home was a large and dense stand of old trees and brush.

One night, and I’ll never forget it, I and my husband listened to the sound of crashing from the woods as huge limbs were torn from trees at least 30 feet in height. No other sound penetrated the night, not a breath of wind, not a yip from one of the local foxes, no cars, no trucks, nothing — just the sound of smashed brush and crashing trees.

The sound continued long into the night and the next morning, the stand of trees was decimated.

 

Yes, I did live on the Lake Champlain islands in 1997-1998, and the incident I mentioned did occur — during the great ice storm of January, 1998, when the weight of the ice decimated many of the trees on the island.

Now, fess up — I bet you thought I was going to describe an incident involving Champ, the Lake Champlain monster, didn’t you? However, it is just acts of nature such as this that can sometimes generate tales of monsters, especially when one is searching for these same monsters.

However, sometimes, there just isn’t an explanation for what someone sees, or hears, or believes. It is then that some monsters enter the ranks of the legendary, monsters such as Nessie, the Loch Ness Monster.

Nessie: Origins of a Legend

 

During the Twentieth century, several photos of Nessie have been published, and in one very well known case, been proven to be a forgery. Numerous eye witness accounts of Nessie have been chronicled, and drawings made of eye witness accounts, such as those shown in this page, but there has never actual physical verification that Nessie exists.

Nessie’s beginnings, though, go back to an earlier time. According to folk lore, and a PBS Nova special on the monster2, the Scottish Highlands has had legends of a strange water-based creature since the Romans first entered the territory over 1500 years ago.

The Romans met up with the Picts in Scotland. The Picts were a pretty feisty group of people that liked to among other things, carve realistic images of animals, including the water-based creature mentioned in the last paragraph. Though it isn’t that unusual for primitive tribes to create stylized images of animals, the Picts concentrated only on images of real world animals. Well, if this was true, what was the water-based beast they represented? It is from simple roots that legends can spring.

The first “modern recording” of the Loch Ness Monster was made by a Saint Columbia, who wrote about saving a swimming man from a large creature by invoking the name of God, an incident occurring in the 500’s.

Of course, it wasn’t that unusual for the early Christians to weave themselves and their beliefs into folk legends and practices of areas they hoped to convert.

Nessie Sightings

Though Nessie achieved most of its fame based on sightings in the 1900’s, there are also eye witness accounts of seeing a the creature of Loch Ness in the 17th through the 19th century3, where it was also known as a water-kelpie or water horse, though without the frequency of this century’s sightings.

However, it was in 1933 that a sighting occurred that put Loch Ness on the map, and Nessie in the news. In 1933, a Mr. Spicer and his wife were driving by Loch Ness when they saw a creature crossing the road, a creature unlike any they had ever seen before. They described the beast as having a long neck followed a large, ponderous body, and they watched it until it left the road and entered the water.

The Spicer sighting was only the first of a plethora of sightings of Nessie, and it seemed the world just couldn’t get its fill of hearing stories about this mythical water beast. According to the Legend of Nessie site6, over 32 sightings occurred in the 1930’s alone.

What accounts for such a sudden surge in Nessie sightings? Well, one main reason is that roads were built around the Loch, increasing exposure of the lake to many more people. Another probable cause is that the idea of Nessie was planted in people’s minds. Where before a person may have seen a stick floating in the water, they may now see a tail. Where before a wave is only a natural movement of water, it now becomes the wake of a creature hidden from sight.

Perhaps it is also a matter a person seeing something that they can’t explain and where before they dismissed the sight as a stick or the natural movement of water, now they consider another source for what they are seeing: Nessie5.

The larger number of sightings of Nessie continued until the advent of World War II turned people’s minds to other monsters, in other places.

Century’s Greatest Hoax?

Many if not most of the Loch Ness sightings are from folks reporting what they genuinely see, and genuinely believe they are seeing. However, you can’t have the interest in something such as Nessie without attracting hoaxes, and the Loch Ness Monster had its share.

One of the first hoaxes was the finding of large and unusual footprints, discovered by a big game hunter of the time, Marmaduke Wetherell. He found large footprints, freshly made, in December of 1933, made casts of the prints and sent them off to the Natural Museum in London.

Well, there was a whole lot of excitement about the first physical “evidence” of the Loch Ness Monster. However, the excitement didn’t last long, because the January following the finding of the prints, scientists announced that not only were the prints not that of an unknown beast, they were the prints of a hippopotamus foot, and a stuffed hippo foot, at that.

The footprint hoax definitely cooled interest in the Loch, at least from the basis of serious study, but it wasn’t the most famous hoax that came from Loch Ness. This dubious honor belongs to a photo supposedly taken by a Dr. Robert Kenneth Wilson in 1934.

This photo shows what looks like a sea serpent with a small head on a long neck, and resembling known images of a pre-historic dinosaur known as the plesiosaur.

The photo was examined and was determined to be genuine, not the result of camera trickery, and investigation of the creature in comparison to the wave sizes put the creature’s neck to be a couple of feet in length. All well, and good, except that the “creature” in the photo was nothing more than a fake serpent neck attached to the back of a toy submarine.

How was the information about the faking of the photo discovered? One of the people that was involved with the hoax made a death bed confession in 1994 to that effect. And the person who was responsible for the hoax? None other than our friend, Marmaduke Wetherell.

After the debacle of the fake serpent footprint, Wetherell contacted his stepson, Christian Spurling, about creating the fake monster and setting up the hoax. With the help of Spurling, Wetherell’s son Ian, and two friends, Colonel Wilson and Maurice Chambers, who was with Dr. Wilson at the famous sighting, the hoax was on.

Why did Wetherell do this? A possible reason could be revenge after the embarrassment he received because of the fake footprint. However, once the photo was published by the Daily Mail, and once the world reacted so strongly to the photo, all involved probably felt it wouldn’t be too good an idea to come forward with a confession about what they had done, even if this was the intention9.

Loch Ness researcher Alister Boyd helped to uncover the hoax when he had discovered a story published years before by Ian Wetherell confessing to the hoax, a story that had been originally ignored. Boyd and fellow researcher David Martin contacted the last living representative of the hoax, Spurling, who confessed that he had helped fake the photo10.

In spite of the two uncovered hoaxes, folks still believe in Nessie and every year, people go to considerable lengths to try and find physical evidence of the Loch Ness Monster.

Current Research Efforts and Findings

In the 1970’s, Dr. Robert Rines from the Academy of Applied Science in Boston, Massachusetts, began to use sonar to try and obtain images of the Loch Ness Monster. He and his crew did obtain images of what they say are the flipper and head and upper body of a creature that they believe can only be the Loch Ness Monster11.

In addition to the work performed by Dr. Rines, other folks have dedicated their lives to finding physical proof of Nessie, folks such as Tim Dinsdale, who literally spent his life looking for proof of Nessie.

Another research project is being conducted by Dan Scott Taylor and is known as the Nessa Project12. The Nessa Project is based on the search for Nessie using a small, 4 person, submarine. Taylor used a smaller submarine, the Viperfish, to search for Nessie in the 1960’s, though without success and with many mechanical problems (though he believes that he was turned around on the bottom once by Nessie passing). Taylor hopes to try again as soon as he has funding for his new, home made submarine, the “Nessa”.

Not all those who research the Loch Ness Monster are seeking actual proof of the existence of the creature. For instance, as mentioned earlier, Alister Boyd helped to de-bunk the Nessie photo hoax, even though he says he has witnessed an actual appearance of Nessie and seeks proof of the monster’s existence. Another more cautious researcher is Richard Carter, who also investigates the existence of Nessie, but also investigates the “evidence” of sightings, to see which is genuine, which hopeful thinking and bad camera shots13.

Of the research against the existence of Nessie, two areas that form the focus of this research is that the lake could not support enough of the Loch Ness creatures to form a viable population, without much more evidence of their existence; and that there is not enough food within the lake to support any such population of larger creatures. Another scientific fact that makes the Loch a difficult home for a creature that could possibly be the last remnant of the dinosaur age, the plesiosaur, is that Loch Ness was a glacier until a scant 10,000 years ago — long after the dinosaurs were extinct14.

However, the searches still continue, the hunt is still on.

A Tale of Two Monsters: Summary

The Tale of Two Monsters takes a look at two legendary beasts, one proven to physically exist, the other still considered myth. We’ve covered how legends can arise, and how these same legends have influenced our currently popular form of story telling: the movies.

The series also looked at cryptozoology or the study of animals without physical verification and that are discovered first through legends, tales, and folklore. In the last two sections of the series, we got a chance to meet the two stars of the series: the giant squid and Nessie, the Loch Ness Monster.

You may be asking whether I personally believe in the existence of the Loch Ness Monster. I would hope that I’m an open minded person, but the existence of the giant squid leads me to doubt the existence of the Loch Ness Monster, and it’s this relationship that tied these two creatures together for me and led to the articles you are reading.

As you saw in Part 3 of this article, the giant squid is a large creature, most likely up to a maximum of 60 feet in length, inhabiting the deepest depths of the oceans. To approach the surface is basically a death sentence for these creatures, yet we have physical evidence of the giant squid, including several well preserved examples in museums such as the Smithsonian.

Consider this: the Loch Ness Monster is not as large as the giant squid, but is much bulkier and would be much heavier. It’s supposedly located in a body of water that is much, much, much smaller than the ocean. The Loch Ness monster is also an air breather, meaning that it must surface to breath, unlike the giant squid — to reiterate, surfacing for the giant squid is death. Yet, we have physical evidence of the giant squid, and nothing more than faint, fuzzy images and highly scattered (yes, scattered) eye witness accounts of Nessie. I can’t help but believe that we would have physical evidence, hard evidence, of Nessie by now if it existed, if we can have enumerable specimans of the giant squid.

Regardless of my personal viewpoint, I respect the beliefs of others and I respect the beliefs of those who feel that Nessie does exist. Something such as the Skeptic’s Dictionary can scorn this belief15, but those who tear down beliefs with such joy are not scientists — they are most likely nothing more than frustrated believers themselves who had their own beliefs shattered and now obtain considerable satisfaction is destroying the beliefs of others.

I started Part 4 of this article with a description of an incident that happened when I lived on the shores of Lake Champlain. I talked about how “normal” events can achieve significance when they occur out of context, or when our expectations are set — I believe in something therefore when something unexplained happens, the unexplained takes shape rather than staying as something unexplained, and therefore easily dismissed.

Scientifically, I may doubt the existence of Champ16, the Lake Champlain equivalent of Nessie, yet there is a part of me that wonders…

This is the part of me that peers into the darkness when I cross the lake on the ferry. This is the part of me that turns towards the lake when I hear an odd sound in the pattern of the waves. This is the part of me that looks to the lake during the full moon, with just a slight bit of expectation and curiosity. Not a lot, just a slight bit. This is the part of me that gives me soul.